[1] |
WITHEY P A. Fatigue failure of the de Havilland comet I[J]. Engineering Failure Analysis, 1997, 4(2):147-154.
doi: 10.1016/S1350-6307(97)00005-8 URL |
[2] | 孟庆轩, 徐斌, 王超. 基于应力约束的热固耦合连续体结构拓扑优化[C]// 中国力学学会, 浙江大学.中国力学大会论文集(CCTAM 2019).杭州: 中国力学学会, 浙江大学, 2019: 3311-3316. |
MENG Qingxuan, XU Bin, Wang Chao. Stress-constrained thermal-mechanical coupling topology optimization of continuous structures[C]// The Chinese Congress of Theoretical and Applied Mechanics, Zhejiang University. The Chinese Congress of Theoretical and Applied Mechanics (CCTAM 2019) . Hangzhou: Chinese Society of Theoretical and Applied Mechanics, Zhejiang University, 2019: 3311-3316. | |
[3] |
王选, 刘宏亮, 龙凯, 等. 基于改进的双向渐进结构优化法的应力约束拓扑优化[J]. 力学学报, 2018, 50(2):385-394.
doi: 10.6052/0459-1879-17-286 |
WANG Xuan, LIU Hongliang, LONG Kai, et al. Stress-constrained topology optimization based on improved bi-directional evolutionary optimization method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2):385-394. | |
[4] | ZHANG S L, GAIN A L, NORATO J A. Stress-based topology optimization with discrete geometric components[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 325:1-21. |
[5] |
VERBART A, LANGELAAR M, KEULEN F V. A unified aggregation and relaxation approach for stress-constrained topology optimization[J]. Structural and Multidisciplinary Optimization, 2017, 55(2):663-679.
doi: 10.1007/s00158-016-1524-0 URL |
[6] |
DEATON J D, GRANDHI R V. Stress-based design of thermal structures via topology optimization[J]. Structural and Multidisciplinary Optimization, 2016, 53(2):253-270.
doi: 10.1007/s00158-015-1331-z URL |
[7] | 张晓鹏, 康柯, 杨东生. 基于相场描述的拉压不对称强度结构拓扑优化[J/OL]. (2019-12-12) [2020-3-31]. http://kns.cnki.net/kcms/detail/21.1373.O3.20191227.1104.004.html . |
ZHANG Xiaopeng, KANG Ke, YANG Dongsheng. Phase-field based topology optimization with Drucker-Prager yield stress constraints[J/OL]. (2019-12-12) [2020-3-31]. http://kns.cnki.net/kcms/detail/21.1373.O3.20191227.1104.004.html . | |
[8] |
LE C, NORATO J, BRUNS T, et al. Stress-based topology optimization for continua[J]. Structural and Multidisciplinary Optimization, 2010, 41(4):605-620.
doi: 10.1007/s00158-009-0440-y URL |
[9] |
ZHOU M D, SIGMUND O. On fully stressed design and p-norm measures in structural optimization[J]. Structural and Multidisciplinary Optimization, 2017, 56(3):731-736.
doi: 10.1007/s00158-017-1731-3 URL |
[10] |
PICELLI R, TOWNSEND S, BRAMPTON C, et al. Stress-based shape and topology optimization with the level set method[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 329:1-23.
doi: 10.1016/j.cma.2017.09.001 URL |
[11] |
LIAN H J, CHRISTIANSEN A N, TORTORELLI D A, et al. Combined shape and topology optimization for minimization of maximal von Mises stress[J]. Structural and Multidisciplinary Optimization, 2017, 55(5):1541-1557.
doi: 10.1007/s00158-017-1656-x URL |
[12] |
LAZAROV B S, WANG F W, SIGMUND O. Length scale and manufacturability in density-based topology optimization[J]. Archive of Applied Mechanics, 2016, 86(1/2):189-218.
doi: 10.1007/s00419-015-1106-4 URL |
[13] |
DA SILVA G A, CARDOSO E L. Stress-based topology optimization of continuum structures under uncertainties[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 313:647-672.
doi: 10.1016/j.cma.2016.09.049 URL |
[14] |
COLLET M, NOËL L, BRUGGI M, et al. Topology optimization for microstructural design under stress constraints[J]. Structural and Multidisciplinary Optimization, 2018, 58(6):2677-2695.
doi: 10.1007/s00158-018-2045-9 URL |
[15] |
POLLINI N, AMIR O. Mixed projection- and density-based topology optimization with applications to structural assemblies[J]. Structural and Multidisciplinary Optimization, 2020, 61(2):687-710.
doi: 10.1007/s00158-019-02390-9 URL |
[16] |
SVANBERG K. The method of moving asymptotes: A new method for structural optimization[J]. International Journal for Numerical Methods in Engineering, 1987, 24(2):359-373.
doi: 10.1002/(ISSN)1097-0207 URL |